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Abstract: This paper discusses the system identification of Multi-input Multi-output (MIMO) system and design of Model 

Predictive Controller (MPC) for identified model. Distillation column process is taken for studies. It is an important 

processing unit in petroleum refining and chemical industries, and needs to be controlled close to the optimum operating 

conditions because of economic incentives. Subspace identification method is used to identify the MIMO model and Model 

Predictive Controller is designed for identified model. MPC is widely adopted in the process industry as an effective means 

to deal with large multivariable constrained control problems.  
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I. INTRODUCTION 

 In the System Control Design the most important 

consideration is a well defined model for the plant that we 

want to control. One way to obtain this model is by using a 

numerical process known as system identification. Most of 

the industrial distillation columns are currently controlled by 

multiloop controllers based on linear models which are 

penalized by several shortcomings. It is obvious that the use 

of PID control has a long history in control engineering and 

is acceptable for most of real applications because of its 

simplicity in architecture, even though a great number of 

advanced control techniques have been exhibited 

successively [10]. But some of the processes are difficult to 

control with standard PID algorithm (e.g., large time 

constants, substantial time delays, inverse response, etc.) 

hence we go for better controller design like Model 

predictive controller.  

  

MPC has been used in industry for more than 30 years, and 

has become an industry standard (mainly in the 

petrochemical industry) due to its intrinsic capability of 

dealing with constraints and multivariable systems [2].  Most 

commercially available MPC technologies are based on a 

linear model of the process.  MPC controller considers 

process input, state and output constraints directly in the 

control calculation. This means that constraint violations are 

far less likely, resulting in tighter control at the optimal 

constrained steady-state for the process. It is the inclusion of  

 

 

constraints that most clearly distinguish MPC from other 

process control techniques. 

In section 2, distillation column   is discussed and in section 

3 subspace identification methods and formation of MIMO 

model from MISO models are given and Model predictive 

controller is designed for identified model in section 5. 

II. DISTILLATION COLUMN  

Distillation is one of the most important operation units in 

chemical engineering. The aim of a distillation column is 

used to separate a mixture of components into two or more 

products of different compositions [9]. The physical 

principle of separation in distillation is the difference in the 

volatility of the components. Distillation control is a 

challenging endeavour due to  

  Nonlinearity  

 Multivariable interaction 

 The non-stationary behaviour  

 The severity of disturbances. 

 Effective control of distillation columns leads to better 

product quality and production flexibility, lower energy 

consumption and lower pollution. [2]. A typical two-product 

distillation column is taken as study model  indicating the 

most important loops of a binary distillation is  shown in 

Fig. 2.1 [4]. Binary distillation column normally requires the 

following control objects: 
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  Distillate composition control 

 Bottom product composition control 

 Reflux drum level control 

 Liquid level control at the base of the column 

The first two control objectives characterize the two product 

streams, where the other two objects are required for 

operational feasibility (i.e. to prevent flooding and drying up 

of the reflux drum and the base of the column). The dynamic 

responses of control loop 3 and 4 are usually much faster 

than the dynamic responses of other control loops.  

 

 
  Fig.2.1 Control of binary distillation column 

 

III. SUBSPACE SYSTEM IDENTIFICATION 

METHOD  

 

System identification is a process that includes acquiring, 

formatting, processing, and identifying mathematical models 

based on raw data from a real-world system. We then 

validate that the resulting model fits the observed system 

behavior. If the results are unsatisfactory, we revise the 

parameters and iterate through the process.  There are many 

methods available for Multi-input Multi-output system 

identification. Here, subspace identification method is done 

by using N4SID algorithm. Subspace methods estimate a 

state space model of a multivariable process directly from 

input/output data. MIMO identification is performed as two 

separate MISO identifications as MISO1 and MISO2. The 

two MISO models are then combined into a single MIMO 

statespace model. Two approaches are used for estimating 

the order of state-space model, i.e., by examining the 

singular value decompositions of N4SID algorithm and by 

looking at the simulation errors [1]. N4SID (Numerical 

methods for Subspace Identification), PEM (Prediction Error 

Minimized method), MOESP (Multivariable Output Error 

Subspace), CVA (Canonical Variate Analysis) are some of 

the algorithms used for subspace identification.  

 

A. Order Estimation  

                The order of state-space model is estimated by 

examining the singular value decompositions and also by 

comparing the loss function and final prediction error (FPE) 

estimated by N4SID algorithm for various model orders. In 

which order gives the minimum loss function and FPE that 

will be chosen as a model order for statespace estimation. 

 

B. Formulation of MIMO Model 

  The method to combine the two MISO models into 

a single MIMO model is formulated by the following three 

steps (Tri Chandra et al). 

Step 1: Constructing the new state (u), input (x) and output 

(y) vectors. 
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Step 2: Estimating the coefficient matrices A, B, C & D for 

two MISO models 

Step 3: Constructing the new coefficient matrices by 

combining the estimated   coefficient matrices of MISO 

models.  
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IV. OVERVIEW OF MODEL PREDICTIVE 

CONTROL 

 

Mainly MPC is used for the processes which are associated 

with the following problems: 

• Large number of manipulated and controlled variables 

• Constraints imposed on both the manipulated and 

controlled variables 

• Changing control objectives  

• Time delays 

 

A. Principle of MPC 

The MPC follows the principle of Receding horizon control 

as shown in fig.4.1 [4].  Here, the control moves are 

calculated by following steps. 
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Fig.4.1 Receding Horizon Control 

 

1. At the k-th sampling instant, the values of the manipulated 

variables, u, at the next M sampling instants, {u (k), u (k+1), 

u (k+M -1)} are calculated. 

This set of M ―control moves‖ is calculated so as to 

minimize the predicted deviations from the reference 

trajectory over the next P sampling instants while satisfying 

the constraints. M = control horizon, P = prediction horizon 

2. Then the first ―control move‖, u (k), is implemented.  

3. At the next sampling instant, k+1, the M-step control 

policy is re-calculated for the next M sampling instants, k+1 

to k+M, and implement the first control move, u(k+1). 

4. Then Steps 1 and 2 are repeated for subsequent sampling 

instants. 

The output weights are used for setpoint tracking of MPC. 

Specifically, the controller predicts deviations for each 

output over the prediction horizon. It multiplies each 

deviation by the output's weight value, and then computes 

the weighted sum of squared deviations, 𝑆𝑦 𝑘 , as 4.11 

𝑆𝑦 𝑘 =    𝑤𝑗
𝑦
 𝑟𝑗  𝑘 + 𝑖 − 𝑦𝑗  𝑘 + 𝑖   

2𝑛𝑦

𝑗=1
𝑃
𝑖=1       4.11 

One of the controller objectives of MPC is to minimize the 

weighted sum of controller adjustments, calculated 

according to 4.12 

𝑆△𝑢 𝑘 =    𝑤𝑗
△𝑢 △ 𝑢𝑗  𝑘 + 𝑖 − 1  

𝑛𝑚𝑣
𝑗=1

𝑀
𝑖=1               4.12  

Where, M is control horizon, 𝑛𝑚𝑣  is the number of 

manipulated variables, △𝑢𝑗  𝑘 + 𝑖 − 1 is the predicted 

adjustment in manipulated variable j at future (or current) 

sampling interval k+i–1, and 𝑤𝑗
△𝑢  is the weight on this 

adjustment, called the rate weight because it penalizes the 

incremental change rather than the cumulative value.  By 

increasing this weight forces the controller   to make smaller, 

more cautious adjustments. For each sampling instant in the 

prediction horizon, the controller multiplies predicted 

deviations for each output by the output’s weight, squares 

the result, and sums over all sampling instants and all 

outputs. One of the controller’s objectives is to minimize 

this sum, that is, to provide good setpoint tracking. The 

weights specify trade-offs in the controller design.  

V.  RESULTS AND DISCUSSION 

 

For MIMO system identification, 90 samples of ethane-

ethylene distillation column with sampling interval 15min 

and with 10% additive white noise  are collected from 

DAISY system identification lab which is having five inputs 

and two outputs as followings and Input-output datas are 

shown in figure.5.1   

Inputs: 

RRF- ratio between the reboiler duty and the feed flow 

RXF- ratio between the reflux rate and the feed flow RDF- 

ratio between the distillate and the feed flow     XE- input 

ethane composition 

PT- top pressure 

 Outputs: 

XD- top ethane composition 

XB- bottom ethylene composition 

  

 

  

 
Fig.5.1 Input-Output data set 

 

MIMO identification is carried out by subspace 

identification method. MIMO model is formulated by 

combining two MISO models as MISO1 and MISO2. The 

input variables of the first MISO model are RRF, RXF, 

RDF, XE & PT and its output variable is XD. For the second 

MISO model, the input variables are RRF, RXF, RDF, XE 

& PT and its output variable is XB. 

 For model order selection, N4SID algorithm is used which 

suggests order of the model according to Singular value 

decomposition. Considering the loss function and final 

prediction error(FPE), model order '3' gives less loss 

function and FPE which is given in table.5.1. So, the model 

order is chosen as '3' for both MISO models. After the 
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selection of model order, N4SID, MOESP, CVA algorithms 

are used to estimate the parameters of the model.  From 90 

samples 69 are taken for estimation and remaining samples 

are taken for validation.   During validation MOESP gives 

better fitness value for both MISO models which is shown in 

fig.5.2 and fig.5.3. 

 

Model 

order 

MISO1 MISO2 

Loss 

function 

Final 

prediction 

error 

Loss 

function 

Final 

prediction 

error 

1 0.234832 0.289286 0.0438408 0.0540068 

2 0.245053 0.358701 0.0413254 0.0604909 

3 0.165676 0.280929 0.0222913 0.0377984 

4 0.158068 0.3048982 9.96708 19.2119 

5 0.184763 0.398982 0.0330724 0.0714173 

   

Table.5.1 Model order selection using N4SID algorithm 

 

 
Fig.5.2 Validation of MISO1 

 
Fig.5.3 Validation of MISO2 

 

The identified State-space model of discrete -time LTI 

system is as the following:  

 

x (k+1)    = A x(k) + B u(k)   5.1 

 

              y (k)       = C x(k) + D u(k)   5.2 

 

A=

























0.09643    0.5728     0.1409-    0          0          0     

0.9478-    0.2129-    0.1308-    0          0          0     

0.2534-    0.5213     0.8102     0          0          0     

0          0          0          0.4089-    0.5248-    0.1856

0          0          0          0.9488     0.0723-  0.000641

0          0          0          0.1667-    0.5216     0.9607  

 

B=

























0.07217-       0.2287    130.2-    101       24.89 

0.09466-       0.6266    114       48.92     83.9- 

0.3144-       0.3244    8.037     2.8       12.06-

1.992     0.3599-   234-      42.44     214.2-

0.9773-       1.18      567.7     104.4     78.82-

0.06773-    0.09287   299.3     161.9-    4.93-  

 

C=









0.23-    0.6017   0.6668-          0          0        0    

0          0            0        0.1144-  0.671    0.56-  

 

D=









0   0   0   0   0

0   0   0   0   0  

 

Model predictive controller was designed for the identified 

model of ethane-ethylene distillation column. The servo 

response of controller is as shown in fig.5.4. MPC designed 

for identified model with the following parameters 

Prediction horizon=150; Control horizon = 50; Output 

Weights = [0.05 0.01]; Manipulated Variables Rate Weights 

= [5 5 5 0.5 1]. 

 

 
Fig.5.4 Closed loop servo response of MPC 
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VI. CONCLUSION 

 

The MIMO system identification has done for ethane-

ethylene distillation column successfully by using Subspace 

identification method. MOESP algorithm gives better results 

during estimation as well as validation of MISO1 and 

MISO2 than the other algorithms. The identified model 

replicates the behaviour of original system while designing 

the MPC. So the identified model is well suited for control 

applications.  
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